博客
关于我
50、ubuntu18.04/20.04进行TensorRT环境搭建和YOLO5部署
阅读量:807 次
发布时间:2019-03-25

本文共 2248 字,大约阅读时间需要 7 分钟。

TensorRT安装与使用指南(Ubuntu环境下)

一、安装TensorRT

安装TensorRT前,确保已成功安装好CUDA和CU DNN。请参考以下步骤安装TensorRT:

1. 获取TensorRT安装包

下载最新版本的TensorRT安装包。你可以从以下链接获取:

https://github.com/tensorrt/tensorrt

2. 解压并安装

解压下载的TensorRT-

.tar.gz文件:

tar -xzf TensorRT-
.tar.gz

3. 系统环境设置

编辑~/bashrc文件,添加以下配置:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/
/lib64export PATH=$PATH:/usr/local/cuda/
/binexport CUDA_HOME=/usr/local/cuda

二、Yolo模型转换与优化(TensorRT)

将预训练的YOLO5模型转换为TensorRT可执行模型,提升 inference 速度。

1. 克隆项目并准备文件

克隆Yolo模型仓库:

git clone https://github.com/yourkę/yolov5.gitcd yolov5

2. 安装必要的库

安装TensorRT、UFF和GraphSurgeon:

pip install tensorrt-
-
-linux_x86_64.whlpip install uff-
-
-none-any.whlpip install graphsurgeon-
-
-none-any.whl

3. 转换模型

将YOLO模型转换为TensorRT格式。你可以参考以下代码示例:

import tensorrt as trtimport torch# 初始化设备device = trt.Device('cpu')# 加载模型并转换为TensorRT格式model = torch.load('path/to/model.pt', map_location=device).float()# 创建TensorRT模型context = trt.create_context(device)engine = trt.Engine(model, context)# 将模型转换为可执行文件def save_engine(engine_path):    engine.save(engine_path)save_engine('model.pt.engine')

4.部署与推理

部署模型并进行推理。以下是使用TensorRT进行推理的示例代码:

import tensorrt as trtimport cv2import numpy as np# 加载已保存的TensorRT模型engine = trt.Engine('model.pt.engine', device)# 创建上下文context = engine.create_context(device)# 创建输入张量inputs = np.random.rand(1, 3, 608, 608).astype(np.float32)# 进行推理outputs = engine.run(inputs, context)# 获取输出for output_name in engine.get_output_names():    print(f'Output shape: {outputs=output_name}.shape')#显示结果img = cv2.imread('input_image.jpg')output_image = cv2.imwrite('result.jpg', img)

三、常见错误处理

1. CUDNN版本不匹配

如果CUDNN版本不匹配,尝试以下解决方案:

pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

2. TensorRT版本不兼容

如果发生错误,检查TensorRT版本是否与CUDA和CUDNN版本相匹配。确保你使用正确的TensorRT版本:

例如:

https://github.com/NVIDIA/TensorRT/releases

四、优化与调试

1. 启用FP16加速(如果支持)

TensorRT支持半精度计算,提升性能:

# 在TensorRT配置中启用FP16export述中按需添加参数,例如:TRT_ENABLE_FP16=1

2. 硬件加速与性能监控

使用nvidia-smi查看GPU使用情况,确保充分利用硬件资源。

五、总结

通过以上步骤,您可以成功安装并使用TensorRT进行高效的模型推理。在实际使用中,建议根据具体场景调整优化参数,并仔细查看TensorRT日志以解决潜在问题。

转载地址:http://blnyk.baihongyu.com/

你可能感兴趣的文章
NIFI1.21.0/NIFI1.22.0/NIFI1.24.0/NIFI1.26.0_2024-06-11最新版本安装_采用HTTP方式_搭建集群_实际操作---大数据之Nifi工作笔记0050
查看>>
NIFI1.21.0_java.net.SocketException:_Too many open files 打开的文件太多_实际操作---大数据之Nifi工作笔记0051
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_补充_插入时如果目标表中已存在该数据则自动改为更新数据_Postgresql_Hbase也适用---大数据之Nifi工作笔记0058
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_补充_更新时如果目标表中不存在记录就改为插入数据_Postgresql_Hbase也适用---大数据之Nifi工作笔记0059
查看>>
NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
查看>>
NIFI1.21.0_Postgresql和Mysql同时指定库_指定多表_全量同步到Mysql数据库以及Hbase数据库中---大数据之Nifi工作笔记0060
查看>>
NIFI1.21.0最新版本安装_连接phoenix_单机版_Https登录_什么都没改换了最新版本的NIFI可以连接了_气人_实现插入数据到Hbase_实际操作---大数据之Nifi工作笔记0050
查看>>
NIFI1.21.0最新版本安装_配置使用HTTP登录_默认是用HTTPS登录的_Https登录需要输入用户名密码_HTTP不需要---大数据之Nifi工作笔记0051
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增加修改实时同步_使用JsonPath及自定义Python脚本_03---大数据之Nifi工作笔记0055
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_插入修改删除增量数据实时同步_通过分页解决变更记录过大问题_01----大数据之Nifi工作笔记0053
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表或全表增量同步_实现指定整库同步_或指定数据表同步配置_04---大数据之Nifi工作笔记0056
查看>>
NIFI1.23.2_最新版_性能优化通用_技巧积累_使用NIFI表达式过滤表_随时更新---大数据之Nifi工作笔记0063
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_根据binlog实现数据实时delete同步_实际操作04---大数据之Nifi工作笔记0043
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_生成插入Sql语句_实际操作02---大数据之Nifi工作笔记0041
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_不带分页处理_01_QueryDatabaseTable获取数据_原0036---大数据之Nifi工作笔记0064
查看>>